x^2-4/x^2-1

Simple and best practice solution for x^2-4/x^2-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-4/x^2-1 equation:


D( x )

x^2 = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

x^2-(4/(x^2))-1 = 0

x^2-4*x^-2-1 = 0

t_1 = x^2

1*t_1^1-4*t_1^-1-1 = 0

1*t_1^1-4*t_1^-1-1*t_1^0 = 0

(1*t_1^2-1*t_1^1-4*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(1*t_1^2-1*t_1^1-4*t_1^0) = 0

t_1^1

t_1^2-t_1-4 = 0

t_1^2-t_1-4 = 0

DELTA = (-1)^2-(-4*1*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)+1)/(1*2) or t_1 = (1-17^(1/2))/(1*2)

t_1 = (17^(1/2)+1)/2 or t_1 = (1-17^(1/2))/2

t_1 in { (1-17^(1/2))/2, (17^(1/2)+1)/2}

t_1 = (1-17^(1/2))/2

x^2-((1-17^(1/2))/2) = 0

1*x^2 = (1-17^(1/2))/2 // : 1

x^2 = (1-17^(1/2))/2

t_1 = (17^(1/2)+1)/2

x^2-((17^(1/2)+1)/2) = 0

1*x^2 = (17^(1/2)+1)/2 // : 1

x^2 = (17^(1/2)+1)/2

x^2 = (17^(1/2)+1)/2 // ^ 1/2

abs(x) = ((17^(1/2)+1)^(1/2))/(2^(1/2))

x = ((17^(1/2)+1)^(1/2))/(2^(1/2)) or x = -(((17^(1/2)+1)^(1/2))/(2^(1/2)))

x in { ((17^(1/2)+1)^(1/2))/(2^(1/2)), -(((17^(1/2)+1)^(1/2))/(2^(1/2))) }

See similar equations:

| 9999+2333+300=x | | xcos51/cos51=15/cos51 | | 9x+2*3-3=0 | | 4/18=y/10 | | -(8r+8)+3=16-5r | | 2y/5.4=9 | | 2(6d+3)=18-3(16-2d) | | 4000+798-300=x | | 7=10-g/ | | y=x^2+6x-19 | | x^2+3y^2=-57 | | 209=(4x+3)(4x-5) | | 32t^4-2=0 | | 2n+10n+8= | | 45+55=34 | | -11f=7(1-2)+5 | | y+5=x^2-4x | | 300+-974213=x | | y-x^2=20+5x | | 3n(n-6)= | | 5(x+6)=34+5x | | 7c-46=6c-29 | | 124x+357*89=670 | | q=4q-75 | | 6(6v+8)-5=1+6v | | 12=p-2+7 | | 12x^3-x^2-6x=0 | | x-(5/15)x=39 | | 2x+27=106 | | x-5/15x=39 | | 24=9+5t | | 2x+6x+20=70 |

Equations solver categories